88 research outputs found

    Topljivost CO2 u eterima 1-aliloksi-3-(4-nonilfenoksi)-2-propanola i polioksietilena

    Get PDF
    1-allyloxy-3-(4-nonylphenoxy)-2-propanol polyoxyethylene ethers (ANAPEs), a new type of absorbent, are polymeric surfactants with different adduct numbers. In this work, ANAPEs, including SN-10 with adduct number of 10 and SN-15 with adduct number of 15, were prepared for CO2 absorption using the isochoric saturation method. Densities of the ANAPEs at atmospheric pressure were measured by a 5.567 ± 0.004 cm3 pycnometer, which decreased with increased temperature. Solubility data of CO2 in ANAPEs were measured within the pressure range of 0 – 600.0 kPa and temperature range of 303.15 – 323.15 K at 10 K intervals and could be calculated on the basis of experimental data of p, xCO2 and bCO2. The solubility of CO2 in absorbents increased linearly with increasing pressure and decreased with increasing temperature at all the pressures. The solubility of CO2 in SN-15 is the highest at all temperatures, but almost the same with SN-10 at 303.15 K over pressures (p < 350kPa), which indicates physical dissolution process. Henry’s constants were determined from solubility data. With increasing temperature, Henry’s constants increased. Thermodynamics of CO2 absorption were calculated including enthalpy, entropy, and Gibbs energy. The absolute value of ΔsolH based on Hx of SN-15 is largest at 303.15 K and indicates stronger SN-15/CO2 interactions, consistent with solubility of CO2 based on Hx. The negative enthalpy demonstrated exothermic process, which means the dissolution of CO2 in ANAPEs is favourable enthalpically. The ΔsolG shows positive value. This work is licensed under a Creative Commons Attribution 4.0 International License.Ispitana je topljivost ugljikova dioksida u eterima 1-aliloksi-3-(4-nonilfenoksi)-2-propanola i polioksietilena (ANAPE), (SN-10 i SN-15) u izohornim uvjetima pri rasponu tlakova 0 – 600 kPa i temperatura 303,15 – 323,15 K. Topljivost CO2 raste s tlakom, a pri svim tlakovima opada s temperaturom. U cijelom temperaturnom rasponu topljivost je veća u SN-15, ali pri 303,15 K i tlakovima nižim od 350 kPa gotovo je izjednačena s topljivošću u SN-10 što ukazuje na fizikalni mehanizam otapanja. Određene su Henryjeve konstante i termodinamika apsorpcije, uključujući entalpiju, entropiju i Gibbsovu energiju. Prema negativnim vrijednostima entalpije otapanje CO2 u eterima ANAPE je egzoterman proces. Ovo djelo je dano na korištenje pod licencom Creative Commons Imenovanje 4.0 međunarodna

    An electro-hydrodynamics modeling of droplet actuation on solid surface by surfactant-mediated electro-dewetting

    Full text link
    We propose an electro-hydrodynamics model to describe the dynamic evolution of a slender drop containing a dilute ionic surfactant on a naturally wettable surface, with a varying external electric field. This unified model reproduces fundamental microfluidic operations controlled by electrical signals, including dewetting, rewetting, and droplet shifting. In this paper, lubrication theory analysis and numerical simulations illustrate how to electrically control the wettability of surface via the charged surfactant. Our numerical results show that electric field promotes dewetting by attracting ionic surfactants onto the transition thin-film region and promotes rewetting by attracting them away from the region.Comment: 16 pages, 13 figure

    Real-time Hybrid Locomotion Mode Recognition for Lower-limb Wearable Robots

    Get PDF
    Real-time recognition of locomotion-related activities is a fundamental skill that the controller of lower-limb wearable robots should possess. Subject-specific training and reliance on electromyographic interfaces are the main limitations of existing approaches. This study presents a novel methodology for real-time locomotion mode recognition of locomotion-related activities in lower-limb wearable robotics. A hybrid classifier can distinguish among seven locomotion-related activities. First, a time-based approach classifies between static and dynamical states based on gait kinematics data. Second, an event-based fuzzy logic method triggered by foot pressure sensors operates in a subject-independent fashion on a minimal set of relevant biomechanical features to classify among dynamical modes. The locomotion mode recognition algorithm is implemented on the controller of a portable powered orthosis for hip assistance. An experimental protocol is designed to evaluate the controller performance in an out-of-lab scenario without the need for a subject-specific training. Experiments are conducted on six healthy volunteers performing locomotion-related activities at slow, normal, and fast speeds under the zero-torque and assistive mode of the orthosis. The overall accuracy rate of the controller is 99.4% over more than 10,000 steps, including seamless transitions between different modes. The experimental results show a successful subject-independent performance of the controller for wearable robots assisting locomotion-related activities

    Simulation of CO2 Capture Process in Flue Gas from Oxy-Fuel Combustion Plant and Effects of Properties of Absorbent

    Get PDF
    Oxy-fuel combustion technology is an effective way to reduce CO2 emissions. An ionic liquid [emim][Tf2N] was used to capture the CO2 in flue gas from oxy-fuel combustion plant. The process of the CO2 capture was simulated using Aspen Plus. The results show that when the liquid– gas ratio is 1.55, the volume fraction of CO2 in the exhaust gas is controlled to about 2%. When the desorption pressure is 0.01 MPa, desorption efficiency is 98.2%. Additionally, based on the designability of ionic liquids, a hypothesis on the physical properties of ionic liquids is proposed to evaluate their influence on the absorption process and heat exchanger design. The process evaluation results show that an ionic liquid having a large density, a large thermal conductivity, and a high heat capacity at constant pressure is advantageous. This paper shows that from capture energy consumption and lean circulation, oxy-fuel combustion is a more economical method. Furthermore, it provides a feasible path for the treatment of CO2 in the waste gas of oxy-fuel combustion. Meanwhile, Aspen simulation helps speed up the application of ionic liquids and oxy-fuel combustion. Process evaluation helps in equipment design and selection

    Integrin β3 Mediates the Endothelial-to-Mesenchymal Transition via the Notch Pathway

    Get PDF
    Background/Aims: Neointimal hyperplasia is responsible for stenosis, which requires corrective vascular surgery, and is also a major morphological feature of many cardiovascular diseases. This hyperplasia involves the endothelial-to-mesenchymal transition (EndMT). We investigated whether integrin β3 can modulate the EndMT, as well as its underlying mechanism. Methods: Integrin β3 was overexpressed or knocked down in human umbilical vein endothelial cells (HUVECs). The expression of endothelial markers and mesenchymal markers was determined by real-time reverse transcription PCR (RT-PCR), immunofluorescence staining, and western blot analysis. Notch signaling pathway components were detected by real-time RT-PCR and western blot analysis. Cell mobility was evaluated by wound-healing, Transwell, and spreading assays. Fibroblast-specific protein 1 (FSP-1) promoter activity was determined by luciferase assay. Results: Transforming growth factor (TGF)-β1 treatment or integrin β3 overexpression significantly promoted the EndMT by downregulating VE-cadherin and CD31 and upregulating smooth muscle actin α and FSP-1 in HUVECs, and by enhancing cell migration. Knockdown of integrin β3 reversed these effects. Notch signaling was activated after TGF-β1 treatment of HUVECs. Knockdown of integrin β3 suppressed TGF-β1-induced Notch activation and expression of the Notch downstream target FSP-1. Conclusion: Integrin β3 may promote the EndMT in HUVECs through activation of the Notch signaling pathway

    Controlling a robotic hip exoskeleton with noncontact capacitive sensors

    Get PDF
    For partial lower-limb exoskeletons, an accurate real-time estimation of the gait phase is paramount to provide timely and well-tailored assistance during gait. To this end, dedicated wearable sensors separate from the exoskeletons mechanical structure may be preferable because they are typically isolated from movement artifacts that often result from the transient dynamics of the physical human-robot interaction. Moreover, wearable sensors that do not require time-consuming calibration procedures are more easily acceptable by users. In this study a robotic hip orthosis was controlled using capacitive sensors placed in orthopedic cuffs on the shanks. The capacitive signals are zeroed after donning the cuffs and do not require any further calibration. The capacitive sensing-based controller was designed to perform online estimation of the gait cycle phase via adaptive oscillators, and to provide a phase-locked assistive torque. Two experimental activities were carried out to validate the effectiveness of the proposed control strategy. Experiments conducted with seven healthy subjects walking on a treadmill at different speeds demonstrated that the controller can estimate the gait phase with an average error of 4%, while also providing hip flexion assistance. Moreover, experiments carried out with four healthy subjects showed that the capacitive sensing-based controller could reduce the metabolic expenditure of subjects compared to the unassisted condition (mean ± SEM, -3.2% ± 1.1)

    Evapotranspiration estimation considering anthropogenic heat based on remote sensing in urban area

    Get PDF
    Urbanization influences hydrologic cycle significantly on local, regional even global scale. With urbanization the water resources demand for dense population sharpened, thus it is a great challenge to ensure water supply for some metropolises such as Beijing. Urban area is traditionally considered as the area with lower evapotranspiration (ET) on account of the impervious surface and the lower wind speed. For most remote sensing models, the ET, defined as latent heat in energy budget, is estimated as the difference between net radiation and sensible heat. The sensible heat is generally higher in urban area due to the high surface temperature caused by heat island, therefore the latent heat (i.e. the ET) in urban area is lower than that in other region. We estimated water consumption from 2003 to 2012 in Beijing based on water balance method and found that the annual mean ET in urban area was about 654 mm. However, using Surface Energy Balance System (SEBS) model, the annual mean ET in urban area was only 348 mm. We attributed this inconsistence to the impact of anthropogenic heat and quantified this impact on the basis of the night-light maps. Therefore, a new model SEBS-Urban, coupling SEBS model and anthropogenic heat was developed to estimate the ET in urban area. The ET in urban area of Beijing estimated by SEBS-Urban showed a good agreement with the ET from water balance method. The findings from this study highlighted that anthropogenic heat should be included in the surface energy budget for a highly urbanized area

    Noncontact Capacitive Sensing Based Human Motion Intent Recognition

    No full text
    • …
    corecore